
BASIC COMPILER

manual

PURPOSE

Created by András Bognár (2011)

For Gábor Bárány, using in his microcomputer system

LANGUAGE

Command format:

[Command linenum] [Command] [Parameters]

10 PRINT "HELLO"

(With #UNNUMBERED directive you can leave [Command linenum], see directives section)

One command line can contain multilpe commands, commands must be separated by ':' in one

line:

10 A=1:B=2*FR:GOTO 120

VARIABLES

Every variable is stored as 16 bit integer

A non array variable needs no declaration, just simply: A=1

1 or 2 dimensional arrays must be declared : DIM ARRAYVAR[12] or DIM TMB[10,12]

Array can be 1 or 2 dimensional array, higher dimensions are not supported

valid:

10 DIM A[5]

20 DIM FIG[8,10]

30 G=7

40 A[2]=23

50 FIG[2,5]=21

EXPRESSIONS

Numerical and boolean expressions are implemented

In numerical expression only '+', '-', '*', '/' are allowed.

In boolean expression all of the operators are allowed that are in this list:

Operators:

 '+' -addition

 '-' -substraction

 '*' -multiplication

 '/' -division

 'AND' -logical AND

 'OR' -logical OR

 'NOT' -logical NOT

 '<' -less than

 '>' -greater than

 '=' -equal

 '>=' -greater or equal

 '<=' -less or equal

 '<>' -not equal

valid numerical expression examples:

10 ATOM[1,0]=1+ATOM[1+ATOMIC[8+D,0]*3,4*A]+8+3*ATOM[1,0]

20 B=A[1,2]*5+6*(RND/12+(AF+9)*(UM-AM))+AXLE-R*S/T

30 A[F,G]=A[F,G]*H[J,K]

40 A[F,G]=85*A[F,G*2]

50 HIK=A[F,G*4+3]/78+FE*(5+U)

60 E=8*A[S[23,J],78+E[2,H[4,5]]*2]+7

COMMAND LIST

LET

 Assigns a value to a variable

 10 LET A=35

 Keyword LET can be left, be substitued with "" empty string:

 10 S=31

END

 Finishes execution of the program

STOP

 Finishes execution of the program

FOR NEXT

 Create a for loop

 This cycle rus 12 times:

 10 FOR A=1 TO 12

 20 NEXT A

 It is also possible to use STEP expression:

 10 FOR A=1 TO 12 STEP 2

 20 NEXT A

 Expressions can be complicated:

 10 FOR A=F*HI+5*(A[1,2]-2) TO D*A/7 STEP R+S

 20 NEXT A

GOSUB RETURN

 Jumps to a subroutine at a given line in the program, placing the return address on the

stack

 RETURN pops a subroutine return address from the stack and jumps to it

 10 GOSUB 30

 30 RETURN

POP

 Removes a subroutine return address from the stack

IF THEN

 Branches depending on whether a condition is true

 IF <BooleanExpression> THEN <Command>

 Boolean expression can contain all type of operators such as:

 '+' -addition

 '-' -substraction

 '*' -multiplication

 '/' -division

 'AND' -logical AND

 'OR' -logical OR

 'NOT' -logical NOT

 '<' -less than

 '>' -greater than

 '=' -equal

 '>=' -greater or equal

 '<=' -less or equal

 '<>' -not equal

 It is valid format:

 10 IF ((A=1) AND (F=3*KL)) OR (s*4>=d*(6+E)) THEN GOTO 120

 Brackets must be used for "AND", "OR", "NOT" operators such as:

 (...) OR (...)

 (...) AND (...)

 NOT (...)

 When "NOT" is used with "OR", "AND" :

 (...) OR NOT (...)

 (...) AND NOT (...)

 "GOTO" can be left after "THEN"

 These lines are equals:

 10 IF A=1 THEN 20

 10 IF A=1 THEN GOTO 20

 After "THEN" multiple commands separated by ':' are executed when boolean

expression is TRUE, else none is executed.

 10 IF B=2 THEN S=3:F=3*S:GOTO 100

GOTO

 Jumps to a given line in the program

 10 GOTO 100

 only a number can be used after GOTO

ON GOTO

 A computed goto - performs a jump based on the value of an expression

 10 ON A GOTO 100,120,130

 If value of A=1 then it jumps to the line 100, if A=2 then it jumps to the line 120, and

so on...

 Maximum 6 line addresses can be given:

 10 ON B GOTO 40,50,60,70,120,200

PEEK

 Returns the value at an address in memory

 10 PEEK A,12893

 Stores the 12893th memory address value to A variable

POKE

 Sets a value at an address in memory

 10 POKE A,12893

 Stores the value of A variable to the 12893th memory address

REM

 Marks a comment in a program

 10 REM You can type here anything

READ

 Reads data from a DATA statement

 10 READ DATA1,D

 20 DATA D 2,10,20,456,32,78,231,459,443,121

 30 DATA HEXDATA 0x1234,0x56AF,0x7A5B,0xFFFF

 Reads the next data from dataline, starting from the begining of the data list

 If data pointer overflows than it flows to the next data line:

 Reading 4 times from D1 DATA line , than the first data is read from D2 DATA line

 10 READ D1,DT

 20 DATA D1 1,2,3

 30 PLOT 10,10

 40 DATA D2 3,4,5

RESTORE

 Sets the position of where to read data from a DATA statement

 10 READ DATA1,D

 20 RESTORE DATA1

 30 DATA DATA1 2,10,20,456,32,78,231,459,443,121

RNG

 Returns a pseudorandom number

 10 RND A

 Variable 'A' will be a random integer number from 0 to 255

SOUND

 Starts or stops playing a tone on a sound channel

 10 SOUND 100

 Play a 100Hz sound on sound channel

 20 SOUND 0

 Stop playing sound

DELAY

 Halt program executing for the specified time

 10 DELAY 120

Graphic commands

COLOR

 Sets a color (brightness) that is used by "PLOT" command

 10 COLOR 35

PLOT

 Puts a pixel to the given position

 10 PLOT 10,23

 Pixel brightness is set to maximum as default.

 Pixel brightness can be given by "COLOR" command

PUTPIXEL

 Puts a pixel to the given position with the given brightness

 10 PUTPIXEL 11,32,A

 Put to the (11,32) coordinates with color given by "A" variable

GETPIXEL

 Puts a pixel value from the given position

 GETPIXEL Q,10,3

 Variable "Q" will be the pixel brightness at position (10,3)

CLS

 Clear screen

POSITION

 Puts the graphic cursor to the given position

 10 POSITION 23,15

DRAWTO

 Draws a line from the actual graphical cursor position to the given coordinates

 10 DRAWTO 75,46

GETMAXX MX

 Gets the maximum X coordinate of the screen

GETMAXY MY

 Gets the maximum Y coordinate of the screen

GETMAXCOLORDEPTH CM

 Gets the maximum color depth (brightness depth) of the screen

VERSHIFTGRLINE

 Shift the given vertical graphical line

 Shifts 34th line UP:

 10 VERSHIFTGRLINE 34,'U'

 Shifts 34th line DOWN:

 10 VERSHIFTGRLINE 34,'D'

HORSHIFTGRLINE

 Shift the given horisontal graphical line

 Shifts 34th line RIGHT:

 10 HORSHIFTGRLINE 34,'R'

 Shifts 34th line LEFT:

 10 HORSHIFTGRLINE 34,'L'

PUTPATTERN TABLE1,10,10,20,20

 Puts a square pattern to the screen from an array variable, or from DATA lines.

 (10,10) is the upper left corner

 (20,20) is the botton right corner of the square

 TABLE1 must have a minimum size to store the sqare area color values to it

 10 DIM TABLE[10,10]

 20 PUTPATTERN TABLE1,10,10,20,20

or

 10 DATA DATALN 1,34,671,23,21,72

 20 PUTPATTERN #DATALN,10,10,20,20

 You must use ’#’ character before name of dataline.

GETPATTERN TABLE2,10,10,20,20

 Gets a square pattern from the screen to an array variable.

 (10,10) is the upper left corner

 (20,20) is the botton right corner of the square

 TABLE2 must have a minimum size to store the sqare area color values to it

 10 DIM TABLE[10,10]

 20 GETPATTERN TABLE2,10,10,20,20

PRINT „Hello Word”

Prints out the string or number to the screen at the cursor’s position. Strings ended

with „\n” will be printed out with new line feeding at the end of the printing.

 10 PRINT „Please give me a number”

 20 PRINT „Print out and new line \n”

 30 PRINT 2*2

 40 A=7:B=5

 50 PRINT A*B+3

GOTOXY 10,4

Moves the text cursor to the given position. This cursor is used for only PRINT

command

10 GOTOXY 7,6

20 PRINT „Hello”

Keyboard commands

KEYBINPUT K

 Gets the currently pressed key on keyboard to the given variable.

 If no key is pressed than it returns with zero.

WAITKEY K

 Waits for a keyboard hit, and returnd with the key code in the given variable.

SID sound generation commands

These commands are to make easy using the SID C64 sound interface device.

SID S1

Initializes SID registers. Writes from the first data bytes of the data line to the SID

registers from register 0 to register 24.

 10 SID S1

20 REM |VOICE1 |VOICE2 |VOICE3 |Filter

DATA S1 0xFF0F,0x0000,0x1169,0x6600,0x0000,0x0000,0x0000,0x0000,0x0000,

0x0000,0x0000,0x0000,0x0100

So 0xFF is written to SID register 0, 0x0F is written to the second register, and so on.

This command does not increments data pointer

SIDS S1

 Same as SID S1 but it increments the data pointer with 24

SVOICE1 S1

Voice 1 registers are written in from the data line. Similarly to SID S1 command,

initializes SID voice registers from 0 to register 6. This command does not increments

data pointer.

SVOICE1S S1

 Same as SVOICE1 S1 but it increments the data pointer.

SVOICE2 S1

 Similar to SVOICE1 S1

SVOICE2S S1

 Similar to SVOICES1 S1

SVOICE3 S1

 Similar to SVOICE1 S1

SVOICE3S S1

 Similar to SVOICES1 S1

SFILTER S1

 Similar to SVOICE1 S1 but it updates SID filter registers.

SFILTERS S1

 Similar to SVOICES1 S1 but it updates SID filter registers.

SFREQ1 0xFFFF

 Sets the frequency of the voice 1 from variable.

SFREQ1S S1

 Sets the frequency of the voice 1 from data line.

SPW1 0xFFFF

 Sets the PWM of the voice 1 from variable.

SPW1S S1

 Sets the PWM of the voice 1 from data line.

SCONTR1 0x00FF

 Sets the control register of the voice 1 from variable.

SADSR1 0xFFFF

 Sets the ADSR register of the voice 1 from variable.

SGATE1

 Hits the Voice 1

SRELEASE1

 Releases the Voice 1

These commands are similar:

SFREQ2 0xFFFF

SFREQ2S S1

SPW2 0xFFFF

SPW2S S1

SCONTR2 0x00FF

SADSR2 0x00FF

SGATE2

SRELEASE2

SFREQ3 0xFFFF

SFREQ3S S1

SPW3 0xFFFF

SPW3S S1

SCONTR3 0x00FF

SADSR3 0x00FF

SGATE3

SRELEASE3

SFC 0xFFFF

 Sets FC register

SRESFILT 0x00FF

 Sets filter register

SVOL 0x00FF

 Sets volume

SPOTX VAR

 Reads out Potentiometer X

SPOTY VAR

 Reads out Potentiometer Y

SRND VAR

 Reads out Random number

SENV3 VAR

 Reads out Envelope of Voice 3

DEBUG / TEST commands (used only in emulator, for software tests only)

#TEST

 Prints out the result of an arithmetical or a boolean expression to the screen.

 10 #TEST A*23+(45/D[12])*2

#BREAK

 Stops the program running, sets the processor into HALT state.

 10 #BREAK

DIRECTIVES

This is about compiling directives to set the compiler to different modes of operation

ASM-END

Inline assembly

It is possible to insert assembly lines between the BASIC lines, these assembly lines must be

written between „ASM” and „END” reserved words like this:

 10 CLS

 20 PRINT „Assembly inlines”

 30 ASM

 MOV B,C

 MVI C,0x12A0

 STA [0xC000]

 END

 40 X=6*Y

 50 PRINT „Code ended”

#UNNUMBERED

Using un-numbered BASIC lines, make the BASIC compiler to number automatically the

BASIC lines. With this directive we can leave the strating [Command linenum] number.

The code must start with „#UNNUMBERED” directive. Labels must be used for jumping

commands like GOTO, GOSUB, IF-THEN. See example below:

 #UNNUMBERED

CLS

@RESTART: SCK=1

@NEWCUBE: READ CU1,X

READ CU1,Y

READ CU1,PX

COLOR 249

POSITION X,Y

DRAWTO PX,PY

POSITION X,Y

GOTO @IDE

X=Y*2

ASM

MOV B,A

STA [0xC005]

END

IF X<>2 THEN @ODA

GOSUB @SUBROUTINE2

DRATO QX,QY

@IDE:

CLS

USING IDE (Integrated Deveopment Environment)

You can open a *.BASIC file and edit and save it , and compile and start emulation:

Buttons:

OPEN: opens the .BASIC file.

Reload file: Reloads the file into the editor.

BASIC compiler: Compiles the BASIC code to machine code

BASIC emulation: Emulates the BASIC lines int he emulator

Machine simulator: Simulates the compiled machine code in the machine simulator

Assembler: Opens and assembles the intermediate created ASM file. It is only for hacking in

the intermediate assembly file to modify the compilation.

HotKeys:

CTRL+O: Open a *.BASIC file to load it to the editor.

CTRL+S: Save the edited file to a *.BASIC file.

BASIC COMPILER

Compiles the opened BASIC code into machine code.

Only Bárány Gáor system is implemented, András Bognár system option is dummy.

Creates intermediate files and output files, you can choose from the menu which files you

want to keep after comilation:

Intermediate files:

 .MASM -macro assembler output

 .ASM -assembly file

 .OBJ -assembler intermediate file

Output files:

 .BIN -binary file

 .HEX -machine code in hexadecmal text file.

BASIC EMULATOR

Starts emulation of the BASIC code.

The code will appear in edit field, but editing is disabled.

Buttons:

„Start”

Hotkey: F1

Starts emulation of BASIC code.

„Break” / „Continue”

Hotkey: F2

Stops the running code, this button changes to „Continue” immediately, pressing it again, the

BASIC code continues from the point where it is stopped before.

„Step”

Hotkey: F3

When code is not running, the code is stopped, it can be executed step by step.

Only one command line is executed when „Step” is pressed, and returns to stopped mode after

the execution. It is for debugging the code.

„Exit”

Hotkey: F4

Exiting from emulator.

„Display Type”

The emulated screen display can be changed to another.

Resolution and color depth is changed.

[Dummy]

Not yet implemented

„Follow code”

Hotkey: F12

When checked, the emulator always highlights the currently executed BASIC line, and scrolls

to it when it is ivisible to make it visible.

It has high CPU usage, maybe only „hot keys” remain usable. (Press F2 to stop it)

„Watch variable”

You can observe variables during running of code.

Type in the variables to observe into edit window:

If the program is running then variables completed automatically with its values after evey

execution of each line. If program is stopped than simply press „GET” to see values of

variables.

„Modify variable”

You can modify variable here.

Type in a simple variable modifier expression into edit box, and press „Modify”

Keyboard

Pressing any key on keyboard keycode is stored into buffer that „KEYBINPUT” and

„WAITKEY” reads out.

If „WAITKEY” is executed a message is appears at the bottom while waiting for a keypress:

MACHINE SIMULATOR

This simulates the real computer

Automatically the recent compiled machine code will be opened

You can see here the diassembled machine code and 3 memory dumps that’s start address

can be set, and you can see the machine registers and processor flags too.

With „Modify” buttons you can modify the processor registers and flags too.

The grahic display is operating as the real computer’s display, Xreg and Yreg and Zreg are

displayed. The Keyb register belong to the keyboard hardware.

OUTPUT UART:

Writing to the UART writes a file buffer that can be written out to a file with this button.

MODIFY MEMORY:

It modifies the content of the operative memory.

FOLLOW CODE:

Hotkey: F12

Switching it off causes that only the display will be updated and the code will run much

faster, otherwise every dump, registers, flags will be updated during the execution of the code.

ASSEMBLER

It automatically opens the currently compiled BASIC code assembly intermediate file. You

can load a new ASM file or you can hack the intermediate ASM file here and re-assemble

that.

EXAMPLE CODE
Here is a code example:

10 REM ***********************************

20 REM * LOVO JATEK *

30 REM * by Andras Bognar *

40 REM * for Computer by Gabor Barany *

50 REM ***********************************

60 REM

70 REM GOMBOK: Hasznald a numerikus bilentyuzetet!

80 REM 1-Balra mozog

90 REM 3-Jobbra mozog

95 REM 5-Loves

98 REM

100 DIM LOVO[3,2]:DIM LOVODEL[3,2]

110 DIM TARG[3,3]:DIM TARGDEL[3,3]

120 GETMAXX MX

130 GETMAXY MY

140 GETMAXCOLORDEPTH CM

150 CM=CM-1

160 MX=MX-1

170 MY=MY-1

180 CLS

185 RESTORE LOVOPIC:RESTORE TARGPIC

190 FOR Y=0 TO 1

200 FOR X=0 TO 2

210 READ LOVOPIC,LOVO[X,Y]:LOVODEL[X,Y]=0

215 IF LOVO[X,Y]=1 THEN LOVO[X,Y]=CM

220 NEXT X

230 NEXT Y

240 FOR Y=0 TO 2

250 FOR X=0 TO 2

260 READ TARGPIC,TARG[X,Y]:TARGDEL[X,Y]=0

265 IF TARG[X,Y]=1 THEN TARG[X,Y]=CM

270 NEXT X

280 NEXT Y

290 REM LOVO es TARG kezdokoordinatai

300 LOVX=15:LOVY=MY-2

310 TARX=10:TARY=1:DIR=1:TMR=0

315 LLY=1:LLX=LOVX:TLY=TARY+3:TLX=TARX:LOVXN=LOVX

320 PUTPATTERN TARG,TARX,TARY,TARX+2,TARY+2

330 PUTPATTERN LOVO,LOVX,LOVY,LOVX+2,LOVY+1

340 REM data lines for game elements

350 DATA LOVOPIC 0,1,0,1,1,1

360 DATA TARGPIC 1,1,1,1,0,1,1,1,1

370 REM --------- main loop ----------------

380 IF DIR=2 THEN 500

385 REM Celtargy jobbra mozgatasa

390 TARX=TARX+1

400 IF TARX+3>=MX THEN DIR=2

410 PUTPATTERN TARGDEL,TARX-1,TARY,TARX+1,TARY+2

420 PUTPATTERN TARG,TARX,TARY,TARX+2,TARY+2

440 GOTO 540

445 REM Celtargy balra mozgatasa

500 TARX=TARX-1

510 IF TARX<=1 THEN DIR=1

520 PUTPATTERN TARGDEL,TARX+1,TARY,TARX+3,TARY+2

530 PUTPATTERN TARG,TARX,TARY,TARX+2,TARY+2

535 REM Billentyuzet vizsgalata

540 KEYBINPUT KEY

550 IF KEY=49 THEN 630

570 IF KEY=51 THEN 680

580 IF KEY=53 THEN 710

590 IF KEY=32 THEN 710

600 GOTO 830

610 REM Billentyuzet rutinok

620 REM Mozgatas jobbra , balra, lovedek inditasa

630 LOVXN=LOVX-1

640 IF LOVXN<1 THEN LOVXN=1

650 GOTO 800

680 LOVXN=LOVXN+1

690 IF LOVXN+3>=MX THEN LOVXN=LOVXN-1

700 GOTO 800

705 REM Lovedek inditasa es mozgatasa felfele

710 IF LLY>(TARY+4) THEN 800

720 LLX=LOVX+1:LLY=LOVY-1

790 REM Tankunk kirajzolsa, elotte torlese

800 PUTPATTERN LOVODEL,LOVX,LOVY,LOVX+2,LOVY+1

810 PUTPATTERN LOVO,LOVXN,LOVY,LOVXN+2,LOVY+1

820 LOVX=LOVXN

825 REM Celtargy lovedekenek kezelese, idozito csokkentese

830 TMR=TMR+1

840 IF TMR>30 THEN TLY=TARY+3:TLX=TARX:TMR=0

850 IF TLY<(LOVY-1) THEN 900

855 PUTPIXEL TLX,TLY,0

860 GOTO 940

900 PUTPIXEL TLX,TLY,0

910 PUTPIXEL TLX,TLY+1,250

920 TLY=TLY+1

925 IF (TLY>=(LOVY-1)) AND ((LOVX=TLX)OR((LOVX+1)=TLX)OR((LOVX+2)=TLX)) THEN 2010

930 REM Lovedekunk mozgatasa

940 IF LLY>(TARY+4) THEN LLY=LLY-1:GOTO 970

950 PUTPIXEL LLX,LLY-1,0

960 GOTO 1000

970 PUTPIXEL LLX,LLY,0

980 PUTPIXEL LLX,LLY-1,250

985 IF (LLY<=(TARY+4)) AND ((TARX=LLX)OR((TARX+1)=LLX)OR((TARX+2)=LLX)) THEN 1010

990 REM Ugras vissza az elejere

1000 GOTO 370

1010 REM

1020 REM

1030 REM HURRA ! NYERTEL

1040 PLOT 5,5

1050 PLOT 5,6

1060 PLOT 5,7

1070 PLOT 4,7

1080 PLOT 7,4

1090 PLOT 7,5

1100 PLOT 7,6

1110 PLOT 7,7

1120 PLOT 7,8

1130 PLOT 8,4

1140 PLOT 8,6

1150 PLOT 8,8

1155 PLOT 10,3

1160 PLOT 10,4

1170 PLOT 10,5

1180 PLOT 10,6

1190 PLOT 10,8

1200 WAITKEY K

1210 GOTO 120

2010 REM

2020 REM

2030 REM BAKKER ! VESZTES VAGY

2040 PLOT 8,8

2050 PLOT 9,8

2060 PLOT 10,8

2070 PLOT 8,9

2080 PLOT 9,9

2090 PLOT 10,9

2100 PLOT 8,10

2110 PLOT 9,10

2120 PLOT 10,10

2130 PLOT 12,10

2140 PLOT 12,9

2150 PLOT 13,10

2160 PLOT 13,9

2170 PLOT 15,10

2180 WAITKEY K

2190 GOTO 120

